Algebarski izrazi

Neka su $a,b,x,y \in R$. Tada je:

(1)
\begin{equation} ax + ay = a(x+y) \end{equation}
(2)
\begin{equation} $(a + b)^2 = a^2 + 2ab + b^2$ - kvadrat zbira \end{equation}
(3)
\begin{equation} $(a - b)^2 = a^2 - 2ab + b^2$ - kvadrat razlike \end{equation}
(4)
\begin{equation} $(a + b)^3 = a^3 + 3a^ 2b +3ab^2 + b^3$ - kub zbira \end{equation}
(5)
\begin{equation} $(a - b)^3 = a^3 - 3a^ 2b +3ab^2 - b^3$ - kub razlike \end{equation}

(6)
\begin{equation} $a^2 - b^2 = (a - b)(a + b)$ - razlika kvadrata \end{equation}
(7)
\begin{equation} $a^2 + b^2$ - ne moze da se rastavi \end{equation}
(8)
\begin{equation} $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ - razlika kubova \end{equation}
(9)
\begin{equation} $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ - zbir kubova \end{equation}
Unless otherwise stated, the content of this page is licensed under GNU Free Documentation License.